

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 1

STEP Business Rules

Good Practices Guide

VERSION: 4.1

AUTHOR: Stibo Systems Professional Services

CONFIDENTIALITY LEVEL: Internal

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 2

Contents

1 Document Information ... 4

1.1 Document Control Information ... 4

1.2 Document Change History ... 4

2 Document Control ... 5

2.1 Document Purpose .. 5

2.2 Content of the document ... 5

3 About Business Rules ... 6

3.1 Types of Business Rules ... 6

4 STEP Online Documentation Support ... 7

5 Readability .. 8

5.1 Business rules objects in STEP ... 8

5.2 Description Field.. 8

5.3 Bind Variables ... 9

5.3.1 Use binds instead of hardcoding ID’s .. 9

5.4 Variable and function names ..10

5.5 Error Messages ..10

5.6 Code layout ..11

5.7 House keeping ...12

6 Use of Libraries ..13

6.1 Avoid large business rule libraries ..13

6.2 Business Functions ..13

7 Logging ..17

8 Exception Handling ..19

8.1 What is NOT valid ..19

8.2 What IS required ..19

9 Use of reflection in JavaScript business ...20

10 Performance...21

10.1 Investigating business rule performance ...21

10.1.1 Workbench business rule test menu ...21

10.1.2 Workbench business rule statistics tab ...22

10.1.3 Admin Portal activity dashboard for business rules ...22

10.1.4 Admin Portal business rule tracing ...24

10.1.5 Important considerations for Queries performances ..25

10.2 Good Practices ..25

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 3

10.2.1 Keep business rule transactions small ..25

10.2.2 Avoid the function GetChildren with many nodes ..25

10.2.3 Use arrays instead of multiple read calls ..26

10.2.4 Consider In-Memory for business rules ..26

11 Working with business rules outside of STEP ...27

12 Appendix A ...30

12.1 Comparison of objects ..30

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 4

1 Document Information

1.1 Document Control Information

Version 4.0

First release date

Last updated date 2025-01-24

Author(s)

Document owner Director, Solution Delivery, Professional Services

Content owner SME

Intended audience Director, Solution Delivery, Professional Services

Document purpose JavaScript Subject Matter Expert

Document objective Solution Consultants, Implementation Partners, Customers

Product domain(s) All domains

Target customer(s) All customers

Software Version All supported software versions of STEP

Software license component(s) STEP SaaS V2

1.2 Document Change History

Version # Date Author Comment

1.0 Initial release.

3.1 2023-09-29 Daniel Baker Updated document with the most recent corporate branding guidelines.

4.0 2023-10-02 Daniel Baker Added new section regarding the changes in the use of reflection in
JavaScript business.

4.1 2025-01-24 Daniel Baker Added new section 4 STEP Online Documentation Support.
Updated document with the most recent corporate branding guidelines.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 5

2 Document Control

2.1 Document Purpose

This document describes good practice guidelines for writing STEP business rules.

The good practices are compiled from other Stibo documents and experiences found by the Stibo Systems

Professional Services team.

2.2 Content of the document

The document contains good practices for the most important topics when developing business rules.

◼ Types of business rules

We have 3 types of business rules in STEP. Business conditions, Business actions and Business

functions. And then we have business rule libraries which are a collection of java script methods.

◼ Readability

Code that is easy to read is easy to maintain and support. Choose good names for variables and

functions. Use proper indentation to make it easy to see where a block of code starts and ends.

◼ Use of libraries and business functions

Reuse code instead of copy and pasting it.

◼ Logging

Good log messages make debugging easier, but make sure that it can be turned on and off, so it

does not clutter the log files.

◼ Exception handling

Wrong exception handling can introduce random errors.

◼ Performance

Keep your business rules small and fast. Business rules that are run during approval or during import

may get invoked many times, so here performance is especially important. Business rules used

occasionally for bulk updates may be less critical regarding performance.

◼ Appendix

Tricks and code examples that can help you to write STEP business rules.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 6

3 About Business Rules

Writing complex business rules is recommended to be undertaken by a software developer. Business rules

can be maintained without involving Stibo Systems. Business rules are a powerful way to extend the behavior

of your STEP system, but it must be used with great responsibility as it can have a significant impact on

functionality and performance.

Business rules can be used in imports, approval processes, workflows, Web UI screens, etc. and provide a

flexible way to tailor the core functionality in a very precise manner.

Alternatives to business rules are extensions. Either extensions written using the extension API, or custom

extensions developed by Stibo Systems. The advantages of extensions are, that they run faster, as they do

not have to be compiled at run-time, and that they can be developed using a Java IDE, which offers code

completion and syntax checking while you write the code. Extensions should be considered for complex

solutions.

3.1 Types of Business Rules

Business rules come in three variants:

 Input Output Side

Effects

Allowed

Business

actions

Current object, current event batch, etc.

provided by the context in which the action is

executed.

None. Yes

Business

conditions

Current object, current event, etc. provided by

the context in which the condition is evaluated.

Boolean result of evaluating

the condition and a message

for the user.

No

Business

functions

Input parameters defined by the function and

provided by the functionality evaluating the

function. Business functions are basic units of

logic that produce an output from an input

without affecting the state of data in STEP.

Business functions will typically serve as helpers

allowing other functionality to delegate a part of

their logic to reusable business functions.

Business functions are valid on all object types.

Result of evaluating the

function.

No

A business library allows users to define JavaScript library functions that can be called from other

JavaScript-based business rules.

Side effects are only allowed for business actions, so only business actions can change data in STEP.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 7

4 STEP Online Documentation Support

Important Information

The STEP online help documentation page Performance Recommendations > Business Rule
Recommendations provides a great deal of good practice information relating to the configuration of
performance analysis of business rules. Subtopics include:

◼ Business Rule Analysis

◼ Business Rule Elements to Use

◼ Business Rule Elements to Avoid

It is highly recommended anyone working with JavaScript within the context of STEP read and understand
this information.

https://service.stibosystems.com/documentation/latest/content/perfrec/functional/brrecs.html?tocpath=Performance%20Recommendations%7CBusiness%20Rule%20Recommendations%7C_____0
https://service.stibosystems.com/documentation/latest/content/perfrec/functional/brrecs.html?tocpath=Performance%20Recommendations%7CBusiness%20Rule%20Recommendations%7C_____0
https://service.stibosystems.com/documentation/latest/content/perfrec/functional/branalysis.html
https://service.stibosystems.com/documentation/latest/content/perfrec/functional/bruse.html
https://service.stibosystems.com/documentation/latest/content/perfrec/functional/bravoid.html

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 8

5 Readability

Code which is easy to read is easy to maintain and support. Readability improves when using self-explaining

names and proper indentation. Keep all names and descriptions in English, to make them easier to understand

for a broader audience.

5.1 Business rules objects in STEP

The business rules objects in STEP should be named according to these good practices:

◼ ID: Title case, no spaces, and special characters.

◼ Name: Title case, spaces allowed.

Example:

Figure 1: Naming of business rules.

5.2 Description Field

Every business rule has a description field. It is good practice to write a concise description of what the

business rule is doing and in which context it is used.

Figure 2: Description field.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 9

5.3 Bind Variables

Bind variables should be named in camel case and start with a letter. It should be named, so that the name of

the bind variable clearly identifies which bind is being used.

Example:

Bind Variable Name to Use For Binding to Type

approveContext Approve Context

currentEventQueue Current Event Queue

currentEventType Current Event Type

currentObject Current Object

currentWorkflow Current Workflow

<derivedEventTypeID>EventType, e.g.,

webLinkEventType

Event Type

<OIEPID>EventQueue, e.g.,

eCommEventQueue

Event Queue

gdsnDataMap GDSN Data Map

currentObjectID ID

importChangeInfo Import Change Info

jsonDocument JSON Document

Logger Logger

lookupTableHome Lookup Table Home

Mailer Mailer

Manager STEP Manager

mongoDBContext MongoDB Context

currentObjectName Name

<attributeID>Value, unless auto-ID is used, e.g.,

gtinValue

Attribute Value

workflowParameters Workflow Parameters

5.3.1 Use binds instead of hardcoding ID’s

When creating business rules, it should be considered whether to use the bind functionality over hardcoding

ID’s. Good practice here is that if the business rule does not need any context specific binds – that is binds

that renders the business rule untestable using the standard business rules test functionality – then ALL

variables referring to specific should be bound.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 10

Figure 3: Use of binds.

For business rules that potentially have context specific binds – e.g., current workflow – it can however be a

better approach to retrieve the workflow using the manager and a hardcoded workflow ID. This will allow the

business rule to still be testable.

5.4 Variable and function names

Variable and function names should be in camel case and start with a letter. Underscore can be used.

Although the Rhino engine used for executing JavaScript is reinitialized prior to the execution of each

JavaScript plugin script fragment, it is considered recommended practice to declare all script variables using

the “var” keyword.

5.5 Error Messages

When defining error messages for business rules, then always make sure that one of the messages is in

English to make them easier to understand for a broader audience.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 11

Figure 4: Translated error messages.

Use variables (in this case “size”) to make the error messages meaningful.

Figure 5: Use of variables in error messages.

5.6 Code layout

Keep lines shorter than 80 characters. Use the indentation (tab) which is suggested by the workbench editor.

Examples:

function toCelsius(fahrenheit) {

return (5 / 9) * (fahrenheit - 32);

}

for (i = 0; i < 5; i++) {

sum += i;

}

if (time < 20) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 12

5.7 House keeping

It is good practice to clearly mark unused business rules as being obsolete, by adding a NotUsed prefix to the

name, if you do not want to delete them.

It is also good practice to clearly mark temporary business rule with a prefix like Test.

Figure 6: Obsolete business rule prefixed by NotUsed.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 13

6 Use of Libraries

Use libraries to encapsulate common code which allows it to be reused by multiple business rules. Split

libraries according to their overall “theme”:

◼ WorkflowUtilities

◼ PackagingUtilities

◼ NumberFormattingUtilities

◼ ApprovalUtilities

6.1 Avoid large business rule libraries

A business rule is compiled each time it is executed. Generally, it takes about 500 milliseconds to compile

about 8,500 lines of code at each business rule execution. If a business rule depends on a library, the library

is compiled as well. So even if a business rule only uses a single function within a library, the whole library is

compiled.

If a library depends on another library, the other library needs to be compiled as well. The rule is:

Important

Be aware that libraries are compiled every time the business rule is executed, which is especially
burdensome to performance when libraries depend on each other. Dividing a large library into multiple
libraries, but keeping the dependencies, does not resolve the issue.

STEP caches the compiled scripts instead of recompiling them before each execution. By default, 100

business rules are cached (Script.CacheSize=100). When the cache is filled up, the least used business rules

are evicted from the cache.

The cache reduces the problem, but it is still good practice to keep business rules libraries small, to improve

performance.

An alternative to business rule libraries is business functions. A business function is one specific function, so

unlike a library, you will not get additional unused functions included and compiled.

6.2 Business Functions

Business functions are a newer construct available from the release of STEP 9. The business function

functionality was originally intended to be used for certain areas of STEP where business actions or conditions

was insufficient due to their lack of returning a result.

As business functions can be utilized as part of a business action or condition they also prove quite useful as

a 1 function library – often more so than a library as the function itself can be named to © Stibo Systems STEP

Performance Good Practices 13/30 make sense in what it does and in that the entire function is utilized every

time – as opposed to a library where often only parts of it is used at a given situation. On the downside a

business function cannot be used to alter data stored in the database – much like a business condition.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 14

A business function can be thought of as a JavaScript method with input and output. To that respect the naming

of the business function should be carefully considered so that the business function communicates as best

possible the functionality it offers.

Figure 7: Examples of named business functions.

Once a proper naming has been established the description field of the business function should also be filled

out. Here it will also be prudent to establish any limitations to the business function if there are any as well as

indicating what the returned element is.

Figure 8: The Description field should be filled out for the business function describing the functionality in more detail as
well as any assumptions or limitations that the business function might have.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 15

If there are input parameters to the business function these should be properly named and described using

the proper Description field when adding the parameter. Remember that this information is what the user of

the business function must rely on to be able to choose the correct input parameter when calling the business

function. Here it is important to also state assumptions/limitations if there are any – e.g., “parameter must not

be null” or similar.

Figure 9: Adding description to parameters.

The business function code should adhere to normal good coding practice with comments where necessary.

Using JavaScript functions or binding other business functions to structure code are considered good practice

just as with any other business rule.

Calling the business function is done by parsing a Json object containing the input parameters to the evaluate

function.

Figure 10: Using a business function.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 16

The conclusions for business functions are that for obfuscating code it is a great tool as the user can use the

function as a black box like when using libraries but unlike libraries it is easy to see from the user what the

business function offers. On the downside the business function runs in non-transactional scope and thus

cannot alter the database in any way.

One additional advantage of using the business function over the library is that the business function offers

“usage” information about which business rules that has a bind to it.

Figure 11: The business function offers information about which business rules that currently has a bind to it.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 17

7 Logging

STEP provides the option to set the detail of business rules warnings and errors which should be logged in the

log file. Logging many details may have a negative impact on the performance, simply because the STEP

system will be busy logging these details.

It is therefore recommended to configure the business rule logging to avoid unnecessary logging of business

rule details.

The amount of logging can be controlled globally (for all business rules) using the configuration property in

sharedconfig.properties.

Log.Level.com.stibo.scripting.StepScriptEngineManager=INFO

The values are ALL|FINEST|FINER|FINE|CONFIG|INFO|WARNING|SEVERE|OFF and use the appropriate

level for each STEP server environment consciously. For example:

◼ Set the log level details on STEP DEV and STEP TEST to FINE to trace errors.

◼ Set the log level details on STEP QA to INFO or WARNING.

◼ Set the log level details on STEP PROD to SEVERE.

Figure 12: Viewing configuration in STEP – System Administration UI.

It is also possible to implement a “log level” local to a specific business rule. For the logging of business rules,

it is good practice to log the result of business rule during development on the development server but remove

the logging when development of the business rule is successfully finished and deployed to the test, quality,

and production servers.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 18

The use of business rule logging can be analyzed by examining the STEP log file. In case the log file contains

business rule remarks and results, then the business rule logs to the log file.

An easy and transparent way to turn logging on and off, is to set a Debug Flag (y/n) in the business rule code.

For example:

//Debug 'flag' REMEMBER to turn 'false' when you are done

var isDebug = false;

//Function to handle whetever logging of debug information should occur or not

function logDebug(message) {

 if(isDebug) {logger.info(message)}

}

...

logDebug("Here’s a message for the log file")

...

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 19

8 Exception Handling

If an error occurs during approval, an exception is thrown from the domain layer. If this exception is cached in

a business rule but not re-thrown, it will not reach the exception approval handler. In this case you can end up

with objects that can be inconsistent where some parts are approved, and others are not. This behavior also

has a negative effect on the performance of the business rule.

You need to be careful when doing exception handling to avoid this behavior when using “try-catch” in business

rules.

8.1 What is NOT valid

Exception is not re-thrown and therefore will not reach the exception approval handler which may cause

inconsistent objects (some parts are approved, and others are not).

try

{

node.approve();

} catch (exception)

{

}

8.2 What IS required

Exception is re-thrown and therefore will reach the exception approval handler avoiding inconsistent objects.

try

{

node.approve();

} catch (exception) {

throw exception;

}

An example:

Figure 13: Example of error handling.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 20

9 Use of reflection in JavaScript business

Use of reflection in JavaScript business rules will be disabled!

In JavaScript business rules, reflection has been used to access non-public methods in the API. Since

reflection can be a security risk and can also potentially lead to performance issues and unexpected issues

during upgrade, it will be disabled in a future release. With the 2023.3 (11.3) release, a new configuration

health check ‘Reflection usage in business rules’ identifies business rules that use reflection. To prepare for

restricted access of reflection usage, rewrite the reported business rules to use publicly available methods.

If the needed functionality is not public, use the customer support portal to create an enhancement request to

make the functionality public.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 21

10 Performance

Some business rules are invoked frequently, like rules running during approval and import. To preserve the

performance of the STEP system, it is important to make sure that your business rules perform well.

A business rule runs in a single transaction, so it is also important that it finished within a short time, to avoid

optimistic locking errors.

10.1 Investigating business rule performance

There are several ways to analyze and monitor business rules.

10.1.1 Workbench business rule test menu

The Workbench business rule test menu is typically used during development, and performance can be taken

from the tests. This method of business rule analysis gives a first indication of the performance of the business

rule for a certain item.

◼ Testing: Right click the business rule and select Test Business Rule.

◼ Run the business rule a couple of times separate against objects (e.g., products) of which you are

certain the business rule will fail or pass.

◼ Then analyze the timing of the business rule to see its performance.

When a long running business rule is identified, use the test menu to evaluate the performance of the business

rule.

For example: The following screenshot shows that the business rule took about 0.54 milliseconds to complete

the business rule for item IS.C4V-3026853. Nevertheless, be aware that it might take longer or shorter for

other Items.

Figure 14: Testing business rule from the Workbench UI.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 22

10.1.2 Workbench business rule statistics tab

Secondly, the Workbench provides a business rule statistics tab to see the performance of the business rule

over time.

The business rule statistics tab displays minimum, maximum, average and total duration of the business rule

as well as the number of invocations per selected period. The period can be configured to a period of an hour

to a week.

For example: The following screenshot shows the same business rule which was invoked more than 1000

times during the last 7 days. That average duration was about 138 ms.

Figure 15: Viewing business rule statistics from the Workbench UI.

It is possible to click on the maximum duration of about 2092 milliseconds. This shows which item the business

rule took longest to execute.

This method of business rule analysis gives an indication of the performance of the business rule over a period.

10.1.3 Admin Portal activity dashboard for business rules

The Admin Portal provides the possibility to track and trace business rules performance over a given period.

The dashboard for business rules is available in STEP Admin Portal > Activity Dashboard > Business Rules.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 23

For example:

Figure 16: Viewing activity dashboard in STEP – System Administration UI.

The period over which the statistics are gathers can be configured. The dashboard shows the top business

rules over the configured period, with:

◼ The longest average evaluation time.

◼ The longest maximum evaluation time.

◼ The longest total time.

◼ The number of invocations.

This method of business rule analysis gives an indication of the performance of the most demanding business

rule over a period. Most important is to analyze the business rules stated under “Total time” since these are

the business rules with the longest average evaluation time and the greatest number of invocations.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 24

10.1.4 Admin Portal business rule tracing

There is an option in the Admin Portal to trace business rules. The functionality of the Business Rule Tracing

section of the Tools tab is described within the interface itself.

Business rule tracing can be enabled for a limited period. When enabled, detailed trace information will be

written to log files available via the admin portal 'Logs' tab.

Warning

Note that enabling business rule tracing will have a negative impact on performance. To minimize the
impact, it is advised to add as many filters for the tracing configuration as possible.

Click the yellow information icon next to each parameter for a complete description of the parameter / filter and

any relevant information for populating it.

Figure 17: Enabling tracing in STEP – System Administration UI

Note

Once tracing has been activated, the relevant business rule(s) must be triggered in STEP within the time
frame defined in the Trace Duration parameter so that the rule is active for tracing. Furthermore, if the
system is stopped or restarted, any tracing that was in progress will also be stopped.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 25

Tracing will stop automatically when the specified duration has expired. Alternatively, users can click the
Stop button (available only when tracing is in progress) at any time to kill the trace prior to completion of the
duration.

10.1.5 Important considerations for Queries performances

This is especially important to sequence conditions from the “more” precise to the “less” one.

For example, query below uses two conditions, the blue one checking “referenced by” links, and the yellow

one looking at an attribute value.

Query execution time is around 1500 ms.

When switching conditions’ sequences:

For the same result, Query execution time is less than 10 ms !

By simply switching conditions sequence, performances are improved by a ratio of 150 !

Always consider using the more restrictive conditions first. Please also note that in some cases, it is better to

have less conditions in the query and then browse query’s results for additional operations.

10.2 Good Practices

10.2.1 Keep business rule transactions small

Business actions have a transaction, which allows you to write data to STEP.

However, business actions with long transactions will degrade the performance. Furthermore, STEP runs with

optimistic locking policy. The longer the transaction, the larger is the probability of introducing an optimistic

locking failure when running the business action simultaneously.

10.2.2 Avoid the function GetChildren with many nodes

The getChildren method has been replaced by the queryChildren method. It is recommended that all instances

of the getChildren method are replaced. The reasoning for this is that business rules using calls "getChildren"

on a substantial number of children may cause memory problems. The problem is that the "getChildren" uses

an unsafe call that will read all children. It should be changed into using "queryChildren".

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 26

10.2.3 Use arrays instead of multiple read calls

Business rules repeatedly using calls to the database for large sets of data significantly degrades performance.

Instead, use one call to get the data, and push it into arrays and work from there. Minimizing the number of

calls to the database aids performance.

When multiple business rules are executed sequentially (e.g., as part of an approval process), and these

business rules fetch the same data from the database multiple times, it is beneficial to rewrite the business

rules to fetch the data once and push the data into (multi-dimensional) arrays or local data structures.

10.2.4 Consider In-Memory for business rules

In-Memory can improve performance of the business rules. In-Memory provides faster operations on complex

data models where business rules navigate references.

Consider In-Memory when performance improvement on business rules is still required and all previous

recommendations on business rules are implemented.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 27

11 Working with business rules outside of STEP

Business rules can be created, maintained, and tested outside of STEP. This allows you to govern the life

cycle of business rules in a standard source code control system such as Git, and from there, be able to deploy

appropriate versions of the business rules to the various STEP systems that are part of a Development,

Testing, Acceptance and Production (DTAP) environment.

For more information about the STEP GIT integration, see “Version Control System Integration” in the online

documentation.

10.1 Creating business rules outside STEP

Even if it is possible to create a business rule outside of STEP, and load it into STEP, it is easier to setup

dependencies, binds, valid object types and so on in STEP, where you can browse for the information, you

want to use.

But after the initial creation, then you can easily maintain the java script code externally.

10.2 Maintain business rules outside STEP

Business rules can be exported as *.js files that can be edited outside of STEP and imported back into STEP

to update a business rule.

The code part is easy to maintain in an external editor, but the binds are best maintained in STEP, where you

have the help of drop-down lists, and selectors to choose the objects.

This business rule called Test1 looks like this in the STEP workbench:

Figure 18: Business rule Test1 in the Workbench.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 28

And it looks like this when exported as a *.js file:

// Business rule metadata omitted

/*===== business rule plugin definition =====

{

 "pluginId" : "JavaScriptBusinessActionWithBinds",

 "binds" : [{

 "contract" : "CurrentObjectBindContract",

 "alias" : "node",

 "parameterClass" : "null",

 "value" : null,

 "description" : null

 }, {

 "contract" : "ReferenceTypeBindContract",

 "alias" : "refType",

 "parameterClass" : "com.stibo.core.domain.impl.ReferenceTypeImpl",

 "value" : "PrimaryProductImage",

 "description" : null

 }, {

 "contract" : "AssetBindContract",

 "alias" : "asset",

 "parameterClass" : "com.stibo.core.domain.impl.FrontAssetImpl",

 "value" : "100300",

 "description" : null

 }, {

 "contract" : "LoggerBindContract",

 "alias" : "logger",

 "parameterClass" : "null",

 "value" : null,

 "description" : null

 }],

 "messages" : [],

 "pluginType" : "Operation"

}

*/

exports.operation0 = function (node,refType,asset,logger) {

// "Current Object" bound to "node"

// A reference type bound to "refType"

// An asset bound to "asset"

var existingRefs = node.getReferences(refType).toArray();

if (existingRefs.length == 0) {

logger.info("Creating reference");

node.createReference(asset, refType);

} else {

logger.info("Asset " + asset.getID() + " alread have a Primary Product

Image");

}

}

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 29

10.3 Test business rules outside STEP

The ability to test business rules outside of STEP allows you to do automatic regression testing of your

business rules. Within a directory you have your exported business rule as a *.js file together with another *.js

file which executes the test.

Figure 19: Sample test file.

The test file will setup the data used by your business rule, and within the STEP.test method you can test if

the business rule created the correct objects in step. All changes on the STEP server will be rolled back when

the test completes.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 30

12 Appendix A

This appendix contains tricks and code examples that can help the user with writing STEP business rules. As

the format of the examples are not fit for a printed-out format it is suggested to simply copy the code and paste

into suitable editor before reading it.

12.1 Comparison of objects

The comparison operators are used to compare two values in a Boolean fashion. The standard available

comparators in JavaScript are:

Operator Name Example Result

== Equal x == y True if x is equal to y

=== Identical x === y True if x is equal to y, and they are of
the same type

!= Not equal x != y True if x is not equal to y

!== Not identical x !== y True if x is not equal to y, or they are
not of the same type

< Less than x < y True if x is less than y

> Greater than x > y True if x is greater than y

>= Greater than or equal to x >= y True if x is greater than or equal to y

<= Less than or equal to x <= y True if x is less than or equal to y

Note

Since business rules are running on a Java runtime environment there can be differences in what is
otherwise perceived as being the same.

A good example here is the String objects: 2 Strings that from a human perspective reads they cannot be

compared equal using the “==” operator IF one String stems from JavaScript and the other from Java.

var someJSString = “xyz”;

var comparison = someJSString == product.getValue(””).getSimpleValue();

Will always produce false no matter if the value on the product was “xyz”.

For String it is therefore recommended to always use the .equals() method available on both JavaScript and

Java:

var someJSString = “xyz”;

var comparison = someJSString.equals(product.getValue(””).getSimpleValue());

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 31

11.2 Looping children of an object

When looping through the children of an object the user should refrain from calling the getChildren() method

as it consumes memory and in the case not all children needs to be traversed the getChildren is HIGHLY

ineffective. Instead, the queryChildren method should be used as this method only picks up the next object

when the previous object has been processed.

Example 1: Looping through children using an anonymous inline implementation of the QueryConsumers

consume method:

var childrenQuery = node.queryChildren();

childrenQuery.forEach(function(child) {

logger.info(child.getTitle());

return false; // break the "forEach" on the query

});

Example 2: Looping through children using an explicit implementation of the QueryConsumers consume

method (printTitle in this case)

function printTitle(child) {

logger.info(child.getTitle());

return true; // continue the "forEach" on the query

}

var childrenQuery = node.queryChildren();

childrenQuery.forEach(printTitle);

11.3 Searches

It is also possible to do searches as part of the scripting API however one should be careful about using these

as they can easily lead to exceptionally long running times of the scripts.

Also notice that the below examples are not all valid for all versions of STEP.

11.3.1 Example 1: Perform single attribute search in products (pre STEP 9)

function singleAttributeSearchProduct(manager, attribute, value, maxResult){

var config = new

com.stibo.core.domain.singleattributequery.SingleAttributeQueryHome.Single

AttributeQuerySpecification(com.stibo.core.domain.Product, attribute, value);

var home =

manager.getHome(com.stibo.core.domain.singleattributequery.SingleAttribute

QueryHome);

return home.querySingleAttribute(config).asList(maxResult);

}

Note

Please observe that no matter what is chosen as maxResult the result list cannot be more than 100 – the
query will simply be cut of at this time.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 32

11.3.2 Example 2: Perform single attribute search in products (STEP 9 and onwards)

function breakingQueryConsumer(node) {

 logger.info(node.getTitle());

 logger.info("Breaking...");

 return false; // break the "forEach" on the query

}

function continuingQueryConsumer(node) {

 logger.info(node.getTitle());

 logger.info("Continuing...");

 return true; // continue the "forEach" on the query

}

var singleAttributeQueryHome =

manager.getHome(com.stibo.core.domain.singleattributequery.SingleAttributeQueryH

ome);

var conditions = new

com.stibo.core.domain.singleattributequery.SingleAttributeQueryHome.SingleAttrib

uteQuerySpecification(com.stibo.core.domain.Product, descriptionAttribute,

"test");

var query = singleAttributeQueryHome.querySingleAttribute(conditions);

query.forEach(breakingQueryConsumer);

query.forEach(continuingQueryConsumer);

11.3.3 Example 3: using the queryAPI (STEP 9 and onwards)

Observe that to use the queryAPI the following addon needs to be installed.

spot --apply=to:query/7.0/latest.spr

var conditions = com.stibo.query.condition.Conditions;

// create a below condition

var isBelowCondition = conditions.hierarchy().simpleBelow(productsRoot);

// create an attribute value condition

var hasValueTestCondition =

conditions.valueOf(descriptionAttribute).eq("test");

var queryHome = manager.getHome(com.stibo.query.home.QueryHome);

// query where both conditions are met (and).

var querySpecification =

queryHome.queryFor(com.stibo.core.domain.Product).where(isBelowCondition.and(has

ValueTestCondition));

var result = querySpecification.execute();

result.forEach(showTitle);

function showTitle(node) {

 logger.info(node.getTitle());

 return true;

}

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 33

11.3.4 Example 4: using the queryAPI (STEP 9 and onwards)

Observe that to use the queryAPI the following addon needs to be installed.

spot --apply=to:query/7.0/latest.spr

function searchProductByAttributeValueAndObjectType(manager, objectTypeID,

attrID, value) {

var conditions = com.stibo.query.condition.Conditions;

var hasValueTestCondition =

conditions.valueOf(manager.getAttributeHome().getAttributeByID("" +

attrID)).eq("" + value);

var hasObjectTypeCondition =

conditions.objectType(manager.getObjectTypeHome().getObjectTypeByID(objectTypeID

));

var queryHome = manager.getHome(com.stibo.query.home.QueryHome);

var querySpecification =

queryHome.queryFor(com.stibo.core.domain.Product).where(hasValueTestCondition.an

d(hasObjectTypeCondition));

var result = querySpecification.execute();

return result;

11.4 Date Handling

Comparing dates can be a little tricky thus Java is kindly offering some tools to compare dates against each

other so that it for instance can be determined if a date is before or after another date.

11.4.1 Example 1: Finding out if a date has passed

function hasISODateBeenExceeded(dateString) {

return hasDateBeenExceeded(dateString, "yyyy-MM-dd");

}

function hasDateBeenExceeded(dateString, pattern) {

var now = java.time.LocalDate.now();

var parsed = java.time.LocalDate.parse(dateString,

java.time.format.DateTimeFormatter.ofPattern(pattern));

return now.isAfter(parsed);

}

// hasISODateBeenExceeded("2017-08-17") will return true as the date has been

exceeded (compared to now)

About Stibo Systems

Stibo Systems is a leading enabler of trustworthy data through AI-powered master data management. Built on a robust and flexible platform, our

SaaS solutions empower enterprises around the globe to deliver superior customer and product experiences. Our trusted data foundation

enhances operational efficiency, drives growth and transformation, supports sustainability initiatives and bolsters AI success. Headquartered in

Aarhus, Denmark, Stibo Systems is a privately held subsidiary of Stibo Software Group, which guarantees the long-term perspective of the

business through foundational ownership. More at www.stibosystems.com.

STEP BUSINESS RULES GOOD PRACTICES GUIDE – CONFIDENTIALITY LEVEL: INTERNAL 34

http://www.stibosystems.com/

