

STEP BUSINESS RULES – BEST PRACTICES

1

STEP BUSINESS RULES

BEST PRACTICES

Version: 3.0 (December 2022)

AUTHOR: Stibo Systems Professional Services

CONFIDENTIALITY LEVEL:

Confidential

STEP BUSINESS RULES – BEST PRACTICES

2

Contents

Contents .. 2

1 Document Control... 4

1.1 Document Purpose .. 4

1.2 Content of the document ... 4

2 About business rules .. 5

2.1 Types of business rules ... 5

3 Readability .. 6

3.1 Business rules objects in STEP ... 6

3.2 Description Field .. 6

3.3 Bind Variables .. 6

3.3.1 Use binds instead of hardcoding ID’s .. 8

3.4 Variable and function names ... 8

3.5 Error Messages ... 9

3.6 Code layout .. 10

3.7 House keeping ... 10

4 Use of libraries .. 11

4.1 Avoid large business rule libraries ... 11

4.2 Business Functions .. 11

5 Logging ... 15

6 Exception Handling... 16

6.1 What is NOT valid .. 16

6.2 What IS required .. 16

7 Performance ... 17

7.1 Investigating business rule performance ... 17

7.1.1 Workbench business rule test menu ... 17

7.1.2 Workbench business rule statistics tab ... 17

7.1.3 Admin Portal activity dashboard for business rules ... 19

7.1.4 Admin Portal business rule tracing .. 20

7.1.5 Important considerations for Queries performances ... 21

7.2 Good Practices .. 22

7.2.1 Keep business rule transactions small .. 22

7.2.2 Avoid the function GetChildren with many nodes .. 22

7.2.3 Use arrays instead of multiple read calls ... 22

7.2.4 Consider In-Memory for business rules ... 22

8 Working with business rules outside of STEP .. 23

8.1 Creating business rules outside STEP .. 23

STEP BUSINESS RULES – BEST PRACTICES

3

8.2 Maintain business rules outside STEP .. 23

8.3 Test business rules outside STEP ... 25

9 Appendix A ... 26

9.1 Comparison of objects ... 26

9.2 Looping children of an object ... 27

9.3 Searches .. 27

9.3.1 Example 1: Perform single attribute search in products (pre STEP 9) .. 27

9.3.2 Example 2: Perform single attribute search in products (STEP 9+) .. 28

9.3.3 Example 3: using the queryAPI (STEP 9 and onwards) .. 28

9.3.4 Example 4: using the queryAPI (STEP 9 and onwards) .. 28

9.4 Date Handling .. 29

9.4.1 Example 1: Finding out if a date has passed ... 29

STEP BUSINESS RULES – BEST PRACTICES

4

1 Document Control

1.1 Document Purpose

This document describes good practice guidelines for writing STEP business rules.

The good practices are compiled from other Stibo documents and experiences found by the Stibo Systems

Professional Services team.

1.2 Content of the document

The document will contain good practices for the most important topics when developing business rules.

Types of business rules: We have 3 types of business rules in STEP. Business conditions, Business

actions and Business functions. And then we have business rule libraries which are a collection of java script

methods.

Readability: Code that is easy to read is easy to maintain and support. Choose good names for variables

and functions. Use proper indentation to make it easy to see where a block of code starts and ends.

Use of libraries and business functions: Reuse code instead of copy and pasting it.

Logging: Good log messages makes debugging easier, but make sure that it can be turned on and off, so it

doesn’t clutter the log files.

Exception handling: Wrong exception handling can introduce random errors.

Performance: Keep your business rules small and fast. Business rules that are run during approval or

during import may get invoked many times, so here performance is very important. Business rules used

occasionally for bulk updates may be less critical regarding performance.

Appendix containing tricks and code examples that can help you to write STEP business rules.

STEP BUSINESS RULES – BEST PRACTICES

5

2 About business rules

Writing complex business rules is best done by a software developer. Business rules can be maintained

without involving Stibo Systems. Business rules are a powerful way to extend the behaviour of your STEP

system, but it must be used with great responsibility as it can have a big impact on functionality and

performance.

Business rules can be used in imports, approval processes, workflows, WebUI screens, etc. and provide a

flexible way to tailor the core functionality in a very precise manner.

Alternatives to business rules are extensions. Either extensions written using the extension API, or custom

extensions developed by Stibo Systems. The advantages of extensions are, that they run faster, as they do

not have to be compiled at run-time, and that they can be developed using a Java IDE, which offers code

completion and syntax checking while you write the code. Extensions should be considered for complex

solutions.

2.1 Types of business rules

Business rules come in three variants:

 Input Output Side
effects
allowed

Business
actions

Current object, current event batch, etc.
provided by the context in which the action is
executed.

None Yes

Business
conditions

Current object, current event, etc. provided by
the context in which the condition is evaluated

Boolean result of evaluating
the condition and a message
for the user

No

Business
functions

Input parameters defined by the function and
provided by the functionality evaluating the
function. Business functions are basic units of
logic that produce an output from an input
without affecting the state of data in STEP.
Business functions will typically serve as
helpers allowing other functionality to delegate a
part of their logic to reusable business
functions. Business functions are valid on all
object types.

Result of evaluating the
function

No

A business library allows users to define JavaScript library functions that can be called from other

JavaScript-based business rules.

Side effects are only allowed for business actions, so only business actions can change data in STEP.

STEP BUSINESS RULES – BEST PRACTICES

6

3 Readability

Code which is easy to read is easy to maintain and support. Readability improves when using self-explaining

names and proper indentation. Keep all names and descriptions in English, to make them easier to

understand for a broader audience.

3.1 Business rules objects in STEP

The business rules objects in STEP should be named according to these good practises

• ID: Title case, no spaces and special characters

• Name: Title case, spaces allowed

Example:

Figure 1: Naming of business rules

3.2 Description Field

Every business rule has a description field. It is good practise to write a short description of what the

business rule is doing and in which context it is used.

Figure 2: Description field

3.3 Bind Variables

Bind variables should be named in camel case and start with a letter. It should be named, so that the name

of the bind variable clearly identifies which bind is being used.

STEP BUSINESS RULES – BEST PRACTICES

7

Examples:

Bind variable name to use For binding to type

approveContext Approve Context

currentEventQueue Current Event Queue

currentEventType Current Event Type

currentObject Current Object

currentWorkflow Current Workflow

<derivedEventTypeID>EventType, e.g.

webLinkEventType

Event Type

<OIEPID>EventQueue, e.g.

eCommEventQueue

Event Queue

gdsnDataMap GDSN Data Map

currentObjectID ID

importChangeInfo Import Change Info

jsonDocument JSON Document

Logger Logger

lookupTableHome Lookup Table Home

Mailer Mailer

Manager STEP Manager

mongoDBContext MongoDB Context

currentObjectName Name

<attributeID>Value, unless auto-ID is

used, e.g. gtinValue

Attribute Value

workflowParameters Workflow Parameters

STEP BUSINESS RULES – BEST PRACTICES

8

3.3.1 Use binds instead of hardcoding ID’s

When creating business rules, it should be considered whether to use the bind functionality over hardcoding

ID’s. Good practice here is that if the business rule does not need any context specific binds – that is binds

that renders the business rule untestable using the standard business rules test functionality – then ALL

variables referring to specific should be bound.

Figure 3: Use of binds

For business rules that potentially have context specific binds – e.g. current workflow – it can however be a

better approach to retrieve the workflow using the manager and a hardcoded workflow ID. This will allow the

business rule to still be testable.

3.4 Variable and function names

Variable and function names should be in camel case and start with a letter. Underscore can be used.

Although the Rhino engine used for executing JavaScript is reinitialized prior to the execution of each

JavaScript plugin script fragment, it is considered recommended practice to declare all script variables using

the “var” keyword.

STEP BUSINESS RULES – BEST PRACTICES

9

3.5 Error Messages

When defining error messages for business rules, then always make sure that one of the messages is in

English to make them easier to understand for a broader audience.

Figure 4: Translated error messages

Use variables (in this case “size”) to make the error messages meaningful.

Figure 5: Use of variables in error messages

STEP BUSINESS RULES – BEST PRACTICES

10

3.6 Code layout

Keep lines shorter than 80 characters. Use the indentation (tab) which is suggested by the workbench editor.

Examples:

function toCelsius(fahrenheit) {

return (5 / 9) * (fahrenheit - 32);

}

for (i = 0; i < 5; i++) {

sum += i;

}

if (time < 20) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

3.7 House keeping

It is good practise to clearly mark unused business rules as being obsolete, by adding a NotUsed prefix to

the name, if you do not want to delete them.

It is also good practise to clearly mark temporary business rule with a prefix like Test.

Figure 6: Obsolete business rule prefixed by NotUsed

STEP BUSINESS RULES – BEST PRACTICES

11

4 Use of libraries

Use libraries to encapsulate common code which allows it to be reused by multiple business rules. Split

libraries according to their overall “theme”

• WorkflowUtilities

• PackagingUtilities

• NumberFormattingUtilities

• ApprovalUtilities

4.1 Avoid large business rule libraries

A business rule is compiled each time it is executed. Generally, it takes about 500 milliseconds to compile

about 8,500 lines of code at each business rule execution. If a business rule depends on a library, the library

is compiled as well. So even if a business rule only uses a single function within a library, the whole library is

compiled.

If a library depends on another library, the other library needs to be compiled as well. The rule is:

Important: Be aware that libraries are compiled every time the business rule is executed, which is especially

burdensome to performance when libraries depend on each other. Dividing a large library into multiple

libraries, but keeping the dependencies, does not resolve the issue.

STEP caches the compiled scripts instead of recompiling them before each execution. By default, 100

business rules are cached (Script.CacheSize=100). When the cache is filled up, the least used business

rules are evicted from the cache.

The cache reduces the problem, but it is still good practice to keep business rules libraries small, to improve

performance.

An alternative to business rule libraries is business functions. A business function is one specific function, so

unlike a library, you will not get additional unused functions included and compiled.

4.2 Business Functions

Business functions are a newer construct limited to STEP 9 and later releases. The business function

functionality was originally intended to be used for certain areas of STEP where business actions or

conditions was insufficient due to their lack of returning a result.

As business functions can be utilized as part of a business action or condition they also prove quite useful as

a 1 function library – often more so than a library as the function itself can be named to © Stibo Systems

STEP Performance Good Practices 13/30 make sense in what it does and in that the entire function is

utilized every time – as opposed to a library where often only parts of it is used at a given situation. On the

downside a business function cannot be used to alter data stored in the database – much like a business

condition.

A business function can be thought of as a JavaScript method with input and output. To that respect the

naming of the business function should be carefully considered so that the business function communicates

as best possible the functionality it offers.

STEP BUSINESS RULES – BEST PRACTICES

12

Figure 7: Examples of named business functions

Once a proper naming has been established the description field of the business function should also be

filled out. Here it will also be prudent to establish any limitations to the business function if there are any as

well as indicating what the returned element is.

Figure 8: The Description field should be filled out for the business function describing the functionality in more detail as
well as any assumptions or limitations that the business function might have

If there are input parameters to the business function these should be properly named and described using

the proper Description field when adding the parameter. Remember that this information is what the user of

the business function must rely on to be able to choose the correct input parameter when calling the

business function. Here it is important to also state assumptions/limitations if there are any – e.g. “parameter

must not be null” or similar.

STEP BUSINESS RULES – BEST PRACTICES

13

Figure 9: Adding description to parameters

The business function code should adhere to normal good coding practice with comments where necessary.

Using JavaScript functions or binding other business functions to structure code are considered good

practice just as with any other business rule.

Calling the business function is done by parsing a json object containing the input parameters to the evaluate

function.

Figure 10: Using a business function

The conclusions for business functions are that for obfuscating code it’s a great tool as the user can use the

function as a black box like when using libraries but unlike libraries it is very easy to see from the user what

the business function offers. On the downside the business function runs in non-transactional scope and

thus cannot alter the database in any way.

One additional advantage of using the business function over the library is that the business function offers

“usage” information about which business rules that has a bind to it.

STEP BUSINESS RULES – BEST PRACTICES

14

Figure 11: The business function offers information about which business rules that currently has a bind to it

STEP BUSINESS RULES – BEST PRACTICES

15

5 Logging

STEP provides the option to set the detail of business rules warnings and errors which should be logged in

the log file. Logging many details may have a negative impact on the performance, simply because the

STEP system will be busy logging these details.

It’s therefore recommended to configure the business rule logging to avoid unnecessary logging of business

rule details.

The amount of logging can be controlled globally (for all business rules) using the configuration property in

sharedconfig.properties.

Log.Level.com.stibo.scripting.StepScriptEngineManager=INFO

The values are ALL|FINEST|FINER|FINE|CONFIG|INFO|WARNING|SEVERE|OFF and use the appropriate

level for each STEP server environment consciously. For example:

• Set the log level details on STEP DEV and STEP TEST to FINE to trace errors.

• Set the log level details on STEP QA to INFO or WARNING.

• Set the log level details on STEP PROD to SEVERE

Figure 12: Viewing configuration in STEP – System administration UI

It is also possible to implement a “log level” local to a specific business rule. For the logging of business

rules, it’s good practise to log the result of business rule during development on the development server but

remove the logging when development of the business rule is successfully finished and deployed to the test,

quality and production servers.

The use of business rule logging can be analysed by examining the STEP log file. In case the log file

contains business rule remarks and results, then the business rule logs to the log file.

An easy and transparent way to turn logging on and off, is to set a Debug Flag (y/n) in the business rule

code.

For example:

//Debug 'flag' REMEMBER to turn 'false' when you are done

var isDebug = false;

//Function to handle whetever logging of debug information should occur or not

function logDebug(message) {

 if(isDebug) {logger.info(message)}

}

...

logDebug("Here’s a message for the log file")

...

STEP BUSINESS RULES – BEST PRACTICES

16

6 Exception Handling

If an error occurs during approval, an exception is thrown from the domain layer. If this exception is cached

in a business rule but not re-thrown, it will not reach the exception approval handler. In this case you can end

up with objects that can be inconsistent where some parts are approved, and others are not. This behaviour

also has a negative effect on the performance of the business rule

You need to be careful when doing exception handling to avoid this behaviour when using “try-catch” in

business rules.

6.1 What is NOT valid

Exception is not re-thrown and therefore will not reach the exception approval handler which may cause

inconsistent objects (some parts are approved, and others are not)

try

{

node.approve();

} catch (exception)

{}

6.2 What IS required

Exception is re-thrown and therefore will reach the exception approval handler avoiding inconsistent objects

try

{

node.approve();

} catch (exception) {

throw exception;

}

An example

Figure 13: Example of error handling

STEP BUSINESS RULES – BEST PRACTICES

17

7 Performance

Some business rules are invoked frequently, like rules running during approval and import. To preserve the

performance of the STEP system, it is important to make sure that your business rules perform well.

A business rule runs in a single transaction, so it is also important that it finished within a short time, in order

to avoid optimistic locking errors.

7.1 Investigating business rule performance

There’re several ways to analyse and monitor business rules.

7.1.1 Workbench business rule test menu

The Workbench business rule test menu is typically used during development, and performance can be

taken from the tests. This method of business rule analysis gives a first indication of the performance of the

business rule for a certain item.

• Testing: Right click the business rule and select Test Business Rule.

• Run the business rule a couple of times separate against objects (e.g. products) of which you’re certain

the business rule will fail or pass.

• Then analyse the timing of the business rule to see its performance.

When a long running business rule is identified, use the test menu to test the performance of the business

rule.

For example: The following screenshot shows that the business rule took about 0.54 milliseconds to

complete the business rule for item IS.C4V-3026853. Nevertheless, be aware that it might take longer or

shorter for other Items.

Figure 14: Testing business rule from workbench

7.1.2 Workbench business rule statistics tab

Secondly, the Workbench provides a business rule statistics tab to see the performance of the business rule

over time.

The business rule statistics tab displays minimum, maximum, average and total duration of the business rule

as well as the number of invocations per selected period. The period can be configured to a period of an

hour to a week.

STEP BUSINESS RULES – BEST PRACTICES

18

For example: The following screenshot shows the same business rule which was invoked more than 1000

times during the last 7 days. That average duration was about 138 ms.

Figure 15: Viewing business rule statistics from workbench

It’s possible to click on the maximum duration of about 2092 milliseconds. This shows which item the

business rule took longest to execute.

This method of business rule analysis gives an indication of the performance of the business rule over a

period.

STEP BUSINESS RULES – BEST PRACTICES

19

7.1.3 Admin Portal activity dashboard for business rules

The Admin Portal provides the possibility to track and trace business rules performance over a given period.

The dashboard for business rules is available in STEP Admin Portal > Activity Dashboard > Business Rules.

For example:

Figure 16: Viewing activity dashboard in STEP – System administration UI

The period over which the statistics are gathers can be configured. The dashboard shows the top business

rules over the configured period, with:

• The longest average evaluation time

• The longest maximum evaluation time

• The longest total time

• The number of invocations

This method of business rule analysis gives an indication of the performance of the most demanding

business rule over a period. Most important is to analyse the business rules stated under “Total time” since

these are the business rules with the longest average evaluation time and the greatest number of

invocations.

STEP BUSINESS RULES – BEST PRACTICES

20

7.1.4 Admin Portal business rule tracing

There’s an option in the Admin Portal of version STEP 8.1 and higher to trace business rules. The

functionality of the Business Rule Tracing section of the Tools tab is described within the interface itself.

Business rule tracing can be enabled for a limited period. When enabled, detailed trace information will be

written to log files available via the admin portal 'Logs' tab.

Note that enabling business rule tracing will have a negative impact on performance. To minimize the

impact, it is advised to add as many filters for the tracing configuration as possible.

Click the yellow information icon next to each parameter for a complete description of the parameter / filter

and any relevant information for populating it.

Figure 17: Figure 16: Enabling tracing in STEP – System administration UI

When the necessary information has been added, click the Activate button to begin tracing.

Note: Once tracing has been activated, the relevant business rule(s) must be triggered in STEP within the

time frame defined in the Trace Duration parameter so that the rule is active for tracing. Furthermore, if the

system is stopped or restarted, any tracing that was in progress will also be stopped.

Tracing will stop automatically when the specified duration has expired. Alternatively, users can click the

Stop button (available only when tracing is in progress) at any time to kill the trace prior to completion of the

duration.

STEP BUSINESS RULES – BEST PRACTICES

21

7.1.5 Important considerations for Queries performances

This is very important to sequence conditions from the “more” precise to the “less” one.

For example, query below uses two conditions, the blue one checking “referenced by” links, and the yellow

one looking at an attribute value.

With sequence below:

Query execution time is around 1500 ms.

When switching conditions’ sequences:

For the same result, Query execution time is less than 10 ms !

By simply switching conditions sequence, performances are improved by a ratio of 150 !

Always consider using the more restrictive conditions first. Please also note that in some cases, it’s better to

have less conditions in the query and then browse query’s results for additional operations.

STEP BUSINESS RULES – BEST PRACTICES

22

7.2 Good Practices

7.2.1 Keep business rule transactions small

Business actions have a transaction, which allows you to write data to STEP.

However, business actions with long transactions will degrade the performance. Furthermore, STEP runs

with optimistic locking policy. The longer the transaction, the larger is the probability of introducing an

optimistic locking failure when running the business action simultaneously.

7.2.2 Avoid the function GetChildren with many nodes

The getChildren method has been replaced by the queryChildren method. It is recommended that all

instances of the getChildren method are replaced. The reasoning for this is that business rules using calls

"getChildren" on a huge number of children may cause memory problems. The problem is that the

"getChildren" uses an unsafe call that will read all children. It should be changed into using "queryChildren".

7.2.3 Use arrays instead of multiple read calls

Business rules repeatedly using calls to the database for large sets of data significantly degrades

performance. Instead, use one call to get the data, and push it into arrays and work from there. Minimizing

the number of calls to the database aids performance.

When multiple business rules are executed sequentially (e.g., as part of an approval process), and these

business rules fetch the same data from the database multiple times, it is beneficial to rewrite the business

rules to fetch the data once and push the data into (multi-dimensional) arrays or local data structures.

7.2.4 Consider In-Memory for business rules

In-Memory can improve performance of the business rules. In-Memory provides faster operations on

complex data models where business rules navigate references.

Consider In-Memory when performance improvement on business rules is still required and all previous

recommendations on business rules are implemented.

STEP BUSINESS RULES – BEST PRACTICES

23

8 Working with business rules outside of STEP

Business rules can be created, maintained, and tested outside of STEP. This allows you to govern the life

cycle of business rules in a standard source code control system such as Git, and from there, be able to

deploy appropriate versions of the business rules to the various STEP systems that are part of a

Development, Testing, Acceptance and Production (DTAP) environment.

For more information about the STEP GIT integration, see “Version Control System Integration” in the online

documentation.

8.1 Creating business rules outside STEP

Even if it is possible to create a business rules outside of STEP, and load it into STEP, it is easier to setup

dependencies, binds, valid object types and so on in STEP, where you can browse for the information you

want to use.

But after the initial creation, then you can easily maintain the java script code externally.

8.2 Maintain business rules outside STEP

Business rules can be exported as *.js files that can be edited outside of STEP and imported back into STEP

to update a business rule.

The code part is easy to maintain in an external editor, but the binds are best maintained in STEP, where
you have the help of drop-down lists, and selectors to choose the objects.

This business rule called Test1 looks like this in the STEP workbench:

Figure 18: Business rule Test1 in workbench

STEP BUSINESS RULES – BEST PRACTICES

24

And it looks like this when exported as a *.js file:

// Business rule metadata omitted

/*===== business rule plugin definition =====

{

 "pluginId" : "JavaScriptBusinessActionWithBinds",

 "binds" : [{

 "contract" : "CurrentObjectBindContract",

 "alias" : "node",

 "parameterClass" : "null",

 "value" : null,

 "description" : null

 }, {

 "contract" : "ReferenceTypeBindContract",

 "alias" : "refType",

 "parameterClass" : "com.stibo.core.domain.impl.ReferenceTypeImpl",

 "value" : "PrimaryProductImage",

 "description" : null

 }, {

 "contract" : "AssetBindContract",

 "alias" : "asset",

 "parameterClass" : "com.stibo.core.domain.impl.FrontAssetImpl",

 "value" : "100300",

 "description" : null

 }, {

 "contract" : "LoggerBindContract",

 "alias" : "logger",

 "parameterClass" : "null",

 "value" : null,

 "description" : null

 }],

 "messages" : [],

 "pluginType" : "Operation"

}

*/

exports.operation0 = function (node,refType,asset,logger) {

// "Current Object" bound to "node"

// A reference type bound to "refType"

// An asset bound to "asset"

var existingRefs = node.getReferences(refType).toArray();

if (existingRefs.length == 0) {

logger.info("Creating reference");

node.createReference(asset, refType);

} else {

logger.info("Asset " + asset.getID() + " alread have a Primary Product

Image");

}

}

STEP BUSINESS RULES – BEST PRACTICES

25

8.3 Test business rules outside STEP

The ability to test business rules outside of STEP allows you to do automatic regression testing of your
business rules. Within a directory you have your exported business rule as a *.js file together with another
*.js file which executes the test.

Figure 19: Sample test file

The test file will setup the data used by your business rule, and within the STEP.test method you can test if

the business rule created the correct objects in step. All changes on the STEP server will be rolled back

when the test completes.

STEP BUSINESS RULES – BEST PRACTICES

26

9 Appendix A

This appendix contains tricks and code examples that can help the user with writing STEP business rules.

As the format of the examples are not fit for a printed-out format it is suggested to simply copy the code and

paste into suitable editor before reading it.

9.1 Comparison of objects

The comparison operators are used to compare two values in a Boolean fashion. The standard available

comparators in JavaScript are:

Operator Name Example Result

== Equal x == y True if x is equal to y

=== Identical x === y True if x is equal to y, and they are of the
same type

!= Not equal x != y True if x is not equal to y

!== Not identical x !== y True if x is not equal to y, or they are not of
the same type

< Less than x < y True if x is less than y

> Greater than x > y True if x is greater than y

>= Greater than or equal to x >= y True if x is greater than or equal to y

<= Less than or equal to x <= y True if x is less than or equal to y

Note that since business rules are running on a Java runtime environment there can be differences in what is

otherwise perceived as being the same.

A good example here is the String objects: 2 Strings that from a human perspective reads the cannot be

compared equal using the “==” operator IF one String stems from JavaScript and the other from Java.

var someJSString = “xyz”;

var comparison = someJSString == product.getValue(””).getSimpleValue();

Will always produce false no matter if the value on the product was “xyz”.

For String it is therefore recommended to always use the .equals() method available on both JavaScript and

Java:

var someJSString = “xyz”;

var comparison = someJSString.equals(product.getValue(””).getSimpleValue());

STEP BUSINESS RULES – BEST PRACTICES

27

9.2 Looping children of an object

When looping through the children of an object the user should refrain from calling the getChildren() method
as it consumes memory and in the case not all children needs to be traversed the getChildren is HIGHLY
ineffective. Instead the queryChildren method should be used as this method only picks up the next object
when the previous object has been processed.

Example 1: Looping through children using an anonymous inline implementation of the QueryConsumers
consume method:

var childrenQuery = node.queryChildren();

childrenQuery.forEach(function(child) {

logger.info(child.getTitle());

return false; // break the "forEach" on the query

});

Example 2: Looping through children using an explicit implementation of the QueryConsumers consume
method (printTitle in this case)

function printTitle(child) {

logger.info(child.getTitle());

return true; // continue the "forEach" on the query

}

var childrenQuery = node.queryChildren();

childrenQuery.forEach(printTitle);

9.3 Searches

It is also possible to do searches as part of the scripting API however one should be careful about using
these as they can easily lead to very long running times of the scripts.

Also notice that the below examples are not all valid for all versions of STEP.

9.3.1 Example 1: Perform single attribute search in products (pre STEP 9)

function singleAttributeSearchProduct(manager, attribute, value, maxResult){

var config = new

com.stibo.core.domain.singleattributequery.SingleAttributeQueryHome.Single

AttributeQuerySpecification(com.stibo.core.domain.Product, attribute, value);

var home =

manager.getHome(com.stibo.core.domain.singleattributequery.SingleAttribute

QueryHome);

return home.querySingleAttribute(config).asList(maxResult);

}

NOTE: Please observe that no matter what is chosen as maxResult the result list cannot be more than 100 –
the query will simply be cut of at this time.

STEP BUSINESS RULES – BEST PRACTICES

28

9.3.2 Example 2: Perform single attribute search in products (STEP 9+)

function breakingQueryConsumer(node) {

 logger.info(node.getTitle());

 logger.info("Breaking...");

 return false; // break the "forEach" on the query

}

function continuingQueryConsumer(node) {

 logger.info(node.getTitle());

 logger.info("Continuing...");

 return true; // continue the "forEach" on the query

}

var singleAttributeQueryHome =

manager.getHome(com.stibo.core.domain.singleattributequery.SingleAttributeQueryH

ome);

var conditions = new

com.stibo.core.domain.singleattributequery.SingleAttributeQueryHome.SingleAttrib

uteQuerySpecification(com.stibo.core.domain.Product, descriptionAttribute,

"test");

var query = singleAttributeQueryHome.querySingleAttribute(conditions);

query.forEach(breakingQueryConsumer);

query.forEach(continuingQueryConsumer);

9.3.3 Example 3: using the queryAPI (STEP 9 and onwards)

Observe that to use the queryAPI the following addon needs to be installed.

spot --apply=to:query/7.0/latest.spr

var conditions = com.stibo.query.condition.Conditions;

// create a below condition

var isBelowCondition = conditions.hierarchy().simpleBelow(productsRoot);

// create an attribute value condition

var hasValueTestCondition =

conditions.valueOf(descriptionAttribute).eq("test");

var queryHome = manager.getHome(com.stibo.query.home.QueryHome);

// query where both conditions are met (and).

var querySpecification =

queryHome.queryFor(com.stibo.core.domain.Product).where(isBelowCondition.and(has

ValueTestCondition));

var result = querySpecification.execute();

result.forEach(showTitle);

function showTitle(node) {

 logger.info(node.getTitle());

 return true;

}

9.3.4 Example 4: using the queryAPI (STEP 9 and onwards)

Observe that to use the queryAPI the following addon needs to be installed\

STEP BUSINESS RULES – BEST PRACTICES

29

spot --apply=to:query/7.0/latest.spr

function searchProductByAttributeValueAndObjectType(manager, objectTypeID,

attrID, value) {

var conditions = com.stibo.query.condition.Conditions;

var hasValueTestCondition =

conditions.valueOf(manager.getAttributeHome().getAttributeByID("" +

attrID)).eq("" + value);

var hasObjectTypeCondition =

conditions.objectType(manager.getObjectTypeHome().getObjectTypeByID(objectTypeID

));

var queryHome = manager.getHome(com.stibo.query.home.QueryHome);

var querySpecification =

queryHome.queryFor(com.stibo.core.domain.Product).where(hasValueTestCondition.an

d(hasObjectTypeCondition));

var result = querySpecification.execute();

return result;

9.4 Date Handling

Comparing dates can be a little tricky thus Java is kindly offering some tools to compare dates against each

other so that it for instance can be determined if a date is before or after another date.

9.4.1 Example 1: Finding out if a date has passed

function hasISODateBeenExceeded(dateString) {

return hasDateBeenExceeded(dateString, "yyyy-MM-dd");

}

function hasDateBeenExceeded(dateString, pattern) {

var now = java.time.LocalDate.now();

var parsed = java.time.LocalDate.parse(dateString,

java.time.format.DateTimeFormatter.ofPattern(pattern));

return now.isAfter(parsed);

}

// hasISODateBeenExceeded("2017-08-17") will return true as the date has been exceeded (compared to

now)

STEP BUSINESS RULES – BEST PRACTICES

30

Stibo Systems, the master data management company, is the trusted source of MDM. Our solutions are the driving force behind forward-thinking
companies around the world that have unlocked the strategic value of their master data, empowering them to improve the customer experience,
drive innovation and growth and create an essential foundation for digital transformation. We give companies the transparency they require and
desire – a single, accurate view of their master data – so they can make informed decisions and achieve goals of scale, scope and ambition.
Stibo Systems is a privately held subsidiary of the Stibo A/S group, founded in 1794, and is headquartered in Aarhus, Denmark. For more
information, visit stibosystems.com

